script
variable of the job config and several arguments are passed via the submitArgs
configuration key:
numpy
scipy
matplotlib
pandas
scikit-learn
tensorflow
, keras
, and pytorch
) are not easy to install with that approach. To install those libraries, follow this approach instead:
Dockerfile
to extend from the base image:
spark.kubernetes.driver.container.image
and spark.kubernetes.executor.container.image
.
.zip
files to add libraries, use the Other
blob type for binary files instead of the File
blob type. If the File
blob type is used, the custom Python job fails.