Trains Smart Answers model on a cold start (unsupervised) basis with with pre-trained or trained embeddings and deploys the trained model to the ML Model Service. Deprecated as of Fusion 5.12 and will be removed in a future release.
id - stringrequired
The ID for this job. Used in the API to reference this job. Allowed characters: a-z, A-Z, dash (-) and underscore (_)
<= 63 characters
Match pattern: [a-zA-Z][_\-a-zA-Z0-9]*[a-zA-Z0-9]?
sparkConfig - array[object]
Provide additional key/value pairs to be injected into the training JSON map at runtime. Values will be inserted as-is, so use " to surround string values
object attributes:{key
required : {
display name: Parameter Name
type: string
}value
: {
display name: Parameter Value
type: string
}}
writeOptions - array[object]
Options used when writing output to Solr or other sources
object attributes:{key
required : {
display name: Parameter Name
type: string
}value
: {
display name: Parameter Value
type: string
}}
readOptions - array[object]
Options used when reading input from Solr or other sources.
object attributes:{key
required : {
display name: Parameter Name
type: string
}value
: {
display name: Parameter Value
type: string
}}
trainingCollection - stringrequired
Solr collection or cloud storage path where training data is present.
>= 1 characters
trainingFormat - stringrequired
The format of the training data - solr, parquet etc.
>= 1 characters
Default: solr
secretName - string
Name of the secret used to access cloud storage as defined in the K8s namespace
>= 1 characters
trainingDataFilterQuery - string
Solr or SQL query to filter training data. Use solr query when solr collection is specified in Training Path. Use SQL query when cloud storage location is specified. The table name for SQL is `spark_input`
textColName - stringrequired
Field which contains the documents that will be used to learn about the vocabulary. If multiple fields, please separate them by comma, e.g. question,answer.
deployModelName - stringrequired
Name of the model to be used for deployment (must be a valid lowercased DNS subdomain with no underscores).
<= 30 characters
Match pattern: ^[a-z0-9]([-a-z0-9]*[a-z0-9])?(\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*$
modelBase - stringrequired
Specify one of these custom embeddings: ['word_custom', 'bpe_custom'] or choose one of the included pre-trained embeddings / models.
Default: word_en_300d_2M
Allowed values: word_custombpe_customword_en_300d_2Mbpe_en_300d_10Kbpe_en_300d_200Kbpe_ja_300d_100Kbpe_ko_300d_100Kbpe_zh_300d_50Kbpe_multi_300d_320Kdistilbert_endistilbert_multibiobert_v1.1
modelReplicas - integer
How many replicas of the model should be deployed by Seldon Core
Default: 1
w2vEpochs - integer
Number of epochs to train custom Word2Vec embeddings
Default: 15
w2vVectorSize - integer
Word-vector dimensionality to represent text (suggested dimension ranges: 100~300)
Default: 150
w2vWindowSize - integer
The window size (context words from [-window, window]) for Word2Vec
Default: 8
trainingSampleFraction - number
The proportion of data to be sampled from the full dataset. Use a value between 0 and 1 for a proportion (e.g. 0.5 for 50%), or for a specific number of examples, use an integer larger than 1. Leave blank for no sampling
minTokensNum - integer
Drop document if the total words is lower than this value
>= 1
exclusiveMinimum: false
Default: 1
maxTokensNum - integer
Drop document if the total words is greater than this value
>= 1
exclusiveMinimum: false
Default: 5000
lowerCases - boolean
Whether to lower case all words in training, i.e. whether to treat upper case and lower case words equally. Only utilized for custom embeddings or for the default model base: word_en_300d_2M.
Default: true
maxVocabSize - integer
Maximum number of words in vocabulary, words will be trimmed if frequency is too low
>= 1
exclusiveMinimum: false
Default: 100000
maxLen - integer
Max length of question/answer by number of tokens
infBatch - integer
The batch size used for encoding during the training
numClusters - integer
DEPRECATED: please, consider using Milvus for fast dense vector similarity search. Number of clusters to be used for fast dense vector retrieval. Note no clustering will be applied if this is set to 0. If left blank, cluster count will be inferred by the job depending on the data
Default: 0
topKClusters - integer
How many closest clusters the model can find for each query. At retrieval time, all answers in top k nearest clusters will be returned and reranked
Default: 10
unidecode - boolean
Use Unidecode library to transform Unicode input into ASCII transliterations. Only utilized for custom embeddings or for the default model base: word_en_300d_2M
Default: true
globalPoolType - string
Determines how token vectors should be aggregated to obtain final content vector. Must be one of: [avg, max].
Default: avg
Allowed values: avgmax
type - stringrequired
Default: argo-qna-coldstart
Allowed values: argo-qna-coldstart