Product Selector

Fusion 5.12
    Fusion 5.12

    Query Rewriting

    Query rewriting is a strategy for improving relevancy using AI-generated data. Many of Fusion’s features can be used to rewrite incoming queries prior to submitting them to Fusion’s Solr core. These rewrites produce more relevant search results with higher conversion rates.

    For example, when spelling corrections are used for query rewriting, a misspelled query can return the same search results as a correctly-spelled query, instead of returning irrelevant results or no results. Spelling corrections are one of several available query rewriting strategies. Apply all available strategies for best results.

    See also the Query Rewriting API.

    Fusion can also rewrite Solr’s responses before returning them to the search application; see Response Rewriting.

    Query rewriting strategies

    Fusion provides a variety of query rewriting strategies to improve relevancy:

    With the exception of business rules, which are always manually created, these strategies correspond to certain Spark jobs. Lucidworks recommends configuring and scheduling all of these jobs for best results. You can also train the jobs by manually adding documents to their output. Manually-added documents are used for machine learning and are never overwritten by new job output.

    Query rewriting strategies are applied in the following order:

    1. Business rules - If a query triggers a business rule, then the business rule overrides any query rewriting strategies that conflict with it.

    2. Query rewrites

      1. Underperforming query rewriting - If a query triggers an underperforming query rewrite, then this strategy overrides all subsequent query rewriting strategies.

      2. Remove words - To help increase the number of results returned, Remove Words query rewrites removes words from the users' search.

    3. Synonym detection

    4. Misspelling detection and phrase detection - The query rewriting results from both of these strategies are applied together. To use only the strategy with the longest surface form, you can configure the Text Tagger query stage with Overlapping Tag Policy set to "LONGEST_DOMINANT_RIGHT".

    Business rules

    Business rules are manually-created formulas for rewriting queries. This is the most versatile strategy for creating custom query rewrites. It supports a variety of conditions and actions to address a wide range of use cases. When you need a very specific query rewrite, this is the best strategy.

    Business rules are applied in the Apply Rules stage of the query pipeline.

    See Business Rules to learn how to create, edit, and publish business rules.

    Underperforming query rewriting

    Head/tail analysis is:

    • Also known as the Underperforming Query Rewriting feature

    • Uses signals data to identify underperforming queries

    • Suggests improved queries that could produce better conversion rates

    When an incoming query contains a matching underperforming query, the original query is replaced by an improved query. These improvements can be:

    Query improvements are applied in the Text Tagger stage of the query pipeline.

    See Head/Tail Analysis (Underperforming Query Rewriting) to learn how to review, edit, create, and publish query improvements.

    Misspelling detection

    The Misspelling Detection feature maps misspellings to their corrected spellings. When Fusion receives a query containing a known misspelling, it rewrites the query using the corrected spelling in order to return relevant results instead of an empty or irrelevant results set.

    Spelling corrections are applied in the Text Tagger stage of the query pipeline.

    Misspelled terms are completely replaced by their corrected terms. If you want to expand the query to include all alternative terms, set the synonyms to bi-directional. See Synonym Detection for more information.

    See:

    Phrase detection

    Phrase detection identifies phrases in your signals so that results with matching phrases can be boosted. This helps compensate for queries where phrases are not distinguished with quotation marks. For example, the query ipad case is rewritten as “ipad case”~10^2, meaning if ipad and case appear within 10 terms (whitespace-delimited tokens) of each other, then boost the result by a factor of 2.

    Phrases are applied in the Text Tagger stage of the query pipeline.

    See:

    Synonym detection

    The Synonym Detection feature generates pairs of synonyms and pairs of similar queries. Two words are considered potential synonyms when they are used in a similar context in similar queries. A query that contains a matching term is expanded to include all of its synonyms, with the original term boosted by a factor of two. Synonyms are applied in the Text Tagger stage of the query pipeline.

    See:

    Remove words

    Use a Remove Words query rewrite to remove particular phrases from queries. Unlike other rewrites, Remove Words rules are entered manually and aren’t generated by a job.

    See Remove Words to learn how to remove words from your users' searches.

    Rules Editor

    The Rules Editor allows you to view, edit, create, approve, enable, and publish rules powered by Fusion. Access the Rules Editor from the Fusion UI by navigating to Relevance > Rules:

    Access the Rules Editor

    Read more about the Rules Editor.

    Query rewrite collections

    For detailed information about query rewriting, see:

    For each app, two auxiliary collections are dedicated to documents used for query rewriting:

    • COLLECTION_NAME_query_rewrite_staging

      Certain Spark jobs send their output to this collection. Rules are also written to this collection initially.

      Some of the content in this collection requires manual review before it can be migrated to the COLLECTION_NAME_query_rewrite, where query pipelines can read it. See below for details.

    • COLLECTION_NAME_query_rewrite

      This collection is optimized for high-volume traffic. Query pipelines can read from this collection to find rules, synonyms, spelling corrections, and more with which to rewrite queries and responses.

    Each app contains exactly one of each of these collections, associated with the app’s default collection. They are not created again for additional collections created within the same app.

    Documents move from COLLECTION_NAME_query_rewrite_staging to the COLLECTION_NAME_query_rewrite collection only when they are approved (either automatically on the basis of their confidence scores or manually by a human reviewer) and a Fusion user clicks Publish. The review field value indicates whether a document will be published when the user clicks Publish:

    review=auto

    A job-generated document has a sufficiently high confidence score and is automatically approved for publication.

    review=pending

    A job-generated document has an ambiguous confidence score and must be reviewed by a Fusion user.

    review=approved

    A Fusion user has reviewed the document and approved it for publication.

    review=denied

    A job-generated document has a low confidence score, or a Fusion user has reviewed and denied it for publication.

    In the query rewriting UI, the value of the review field appears in the Status column.

    You can review and approve or deny documents using the query rewriting UI. You can also change a document’s status to "pending" to save it for later review.

    Rules Simulator query profile

    Rules Simulator is only available for Fusion 5.x.x organizations that do not have a valid Predictive Merchandiser or Experience Optimizer license.

    The Rules Simulator allows product owners to experiment with rules and other query rewrites in the COLLECTION_NAME_query_rewrite_staging collection before deploying them to the COLLECTION_NAME_query_rewrite collection.

    Each app has a COLLECTION_NAME_rules_simulator query profile, configured to use the COLLECTION_NAME_query_rewrite_staging collection for query rewrites instead of the COLLECTION_NAME_query_rewrite collection. This profile is created automatically whenever a new app is created.

    See Configure the Rules Simulator Query Profile for more information about configuration.

    Query pipeline stages for query rewriting

    These query rewriting stages are part of any default query pipeline:

    To trigger a rule that contains a tag, specify the tagname in the request URL of the user search app. See Easily define triggers in tags for more information.

    Spark jobs for query rewriting

    This section describes how Spark jobs support query rewriting. These jobs read from the signals collection and write their output to the COLLECTION_NAME_query_rewrite_staging collection. High-confidence results are automatically migrated from there to the COLLECTION_NAME_query_rewrite collection, while ambiguous results remain in the staging collection until they are reviewed and approved. You can review job results in the Query Rewriting UI.

    For best relevancy, enable all of these jobs.

    Daily query rewriting jobs

    When a new app is created, the jobs below are also created and scheduled to run daily, beginning 15 minutes after app creation, in the following order:

    1. Token and Phrase Spell Correction job

      Detect misspellings in queries or documents using the numbers of occurrences of words and phrases.

    2. Phrase Extraction job

      Identify multi-word phrases in signals.

    3. Synonym Detection

      Use this job to generate pairs of synonyms and pairs of similar queries. Two words are considered potential synonyms when they are used in a similar context in similar queries.

    Process flow

    The first and second jobs can provide input to improve the Synonym job’s output:

    • Token and Phrase Spell Correction job results can be used to avoid finding mainly misspellings, or mixing synonyms with misspellings.

    • Phrase Extraction job results can be used to find pairs of synonyms with multiple tokens, such as "lithium ion"/"ion battery".

    The Phrase Extraction and Synonym Detection jobs are triggered by the success of the previous job: the phrase detection job runs only if the spell correction job succeeds, and the synonym job runs only if the phrase detection job succeeds.

    Additional query rewriting jobs

    These jobs also produce results that are used for query rewriting, but must be created manually:

    • Head/Tail Analysis job

      Perform head/tail analysis of queries from collections of raw or aggregated signals, to identify underperforming queries and the reasons. This information is valuable for improving overall conversions, Solr configurations, auto-suggest, product catalogs, and SEO/SEM strategies, in order to improve conversion rates.

    • Ground Truth job

      Ground truth or gold standard datasets are used in the ground truth jobs and query relevance metrics to define a specific set of documents.

    Ground truth jobs estimate ground truth queries using click signals and query signals, with document relevance per query determined using a click/skip formula.

    Use this job along with the Ranking Metrics job to calculate relevance metrics, such as Normalized Discounted Cumulative Gain (nDCG).

    To create a ground truth job, sign in to Fusion and click Collections > Jobs. Then click Add+ and in the Experiment Evaluation Jobs section, select Ground Truth. You can enter basic and advanced parameters to configure the job. If the field has a default value, it is populated when you click to add the job.

    Basic parameters

    To enter advanced parameters in the UI, click Advanced. Those parameters are described in the advanced parameters section.
    • Spark job ID. The unique ID for the Spark job that references this job in the API. This is the id field in the configuration file. Required field.

    • Input/Output Parameters. This section includes the Signals collection field, which is the Solr collection that contains click signals and its associated search log identifier. This is the signalsCollection field in the configuration file. Required field.

    Advanced parameters

    If you click the Advanced toggle, the following optional fields are displayed in the UI.

    • Spark Settings. This section lets you enter parameter name:parameter value options to use in this job. This is the sparkConfig field in the configuration file.

    • Additional Options. This section includes the following options:

      • Search logs pipeline. The pipeline ID associated with search log entries. This is the searchLogsPipeline field in the configuration file.

      • Join key (query signals). The common key that joins the query signals in the signals collection. This is the joinKeySignals field in the configuration file.

      • Join key (click signals). The common key that joins the click signals in the signals collection. This is the joinKeySignals field in the configuration file.

      • Search logs and options. This section lets you enter property name:property value options to when loading the search logs collection. This is the searchLogsAddOpts field in the configuration file.

      • Additional signals options. This section lets you enter property name:property value options when loading the signals collection. This is the signalsAddOpts field in the configuration file.

      • Filter queries. The array[string] filter query to apply when selecting top queries from the query signals in the signals collection. This is the filterQueries field in the configuration file.

      • Top queries limit. The total number of queries to select for ground truth calculations when this job is run. This is the topQueriesLimit field in the configuration file.

    "rules" role for query rewriting users

    The "rules" role provides permissions to access query rewriting features for all Fusion apps. A Fusion admin can create a user account with this role to give a business user access to the Query Rewriting UI.

    Query rewrite jobs post-processing cleanup

    To perform more extensive cleanup of query rewrites, complete the procedures in Query Rewrite Jobs Post-processing Cleanup.