Skip to main content
POST
/
ai
/
prediction
/
rag
/
{MODEL_ID}
RAG use case
import requests

url = "https://application_id.applications.lucidworks.com/ai/prediction/rag/{MODEL_ID}"

payload = {
    "batch": [
        {
            "text": "What is RAG?",
            "documents": [
                {
                    "body": "Retrieval Augmented Generation, known as RAG, a framework promising to optimize generative AI.",
                    "source": "http://rag.com/22",
                    "title": "What are the benefits of RAG?",
                    "date": "2022-01-31T19:31:34Z"
                }
            ]
        }
    ],
    "useCaseConfig": {
        "memoryUuid": "27a887fe-3d7c-4ef0-9597-e2dfc054c20e",
        "extractRelevantContent": False,
        "answerNotFoundMessage": "Not possible to answer given this content."
    },
    "modelConfig": {
        "temperature": 0.8,
        "topP": 1,
        "topK": -1,
        "presencePenalty": 2,
        "frequencyPenalty": 1,
        "maxTokens": 1,
        "apiKey": "API key specific to use case and model",
        "azureDeployment": "DEPLOYMENT_NAME",
        "azureEndpoint": "https://azure.endpoint.com",
        "googleProjectId": "[GOOGLE_PROJECT_ID]",
        "googleRegion": "[GOOGLE_PROJECT_REGION_OF_MODEL_ACCESS]"
    }
}
headers = {"Content-Type": "application/json"}

response = requests.post(url, json=payload, headers=headers)

print(response.json())
{
  "predictions": [
    {
      "response": "ANSWER: \\\"Retrieval Augmented Generation, known as RAG, a framework promising to optimize generative AI.\"\\nSOURCES: [\\\"http://example.com/112\\\"]",
      "tokensUsed": {
        "promptTokens": 148,
        "completionTokens": 27,
        "totalTokens": 175
      },
      "answer": "Retrieval Augmented Generation, known as RAG, a framework promising to optimize generative AI.",
      "sources": "http://example.com/112",
      "memoryUuid": "27a887fe-3d7c-4ef0-9597-e2dfc054c20e",
      "answerNotFoundMessage": "Not possible to answer given this content.",
      "answerFound": true
    }
  ]
}

Headers

Authorization: Bearer ACCESS_TOKEN
string

The authentication and authorization access token.

Content-Type
string

application/json

Example:

"application/json"

Path Parameters

MODEL_ID
string
required

Unique identifier for the model.

Example:

"6a092bd4-5098-466c-94aa-40bf6829430\""

Body

application/json
batch
BatchRag · object[]
useCaseConfig
object
modelConfig
object

Provides fields and values that specify ranges for tokens. Fields used for specific use cases and models are specified. The default values are used if other values are not specified.

Response

200 - application/json

OK

predictions
object[]