import requests
url = "https://application_id.applications.lucidworks.com/ai/prediction/rag/{MODEL_ID}"
payload = {
"batch": [
{
"text": "What is RAG?",
"documents": [
{
"body": "Retrieval Augmented Generation, known as RAG, a framework promising to optimize generative AI.",
"source": "http://rag.com/22",
"title": "What are the benefits of RAG?",
"date": "2022-01-31T19:31:34Z"
}
]
}
],
"useCaseConfig": {
"memoryUuid": "27a887fe-3d7c-4ef0-9597-e2dfc054c20e",
"extractRelevantContent": False,
"answerNotFoundMessage": "Not possible to answer given this content."
},
"modelConfig": {
"temperature": 0.8,
"topP": 1,
"topK": -1,
"presencePenalty": 2,
"frequencyPenalty": 1,
"maxTokens": 1,
"apiKey": "API key specific to use case and model",
"azureDeployment": "DEPLOYMENT_NAME",
"azureEndpoint": "https://azure.endpoint.com",
"googleProjectId": "[GOOGLE_PROJECT_ID]",
"googleRegion": "[GOOGLE_PROJECT_REGION_OF_MODEL_ACCESS]"
}
}
headers = {"Content-Type": "application/json"}
response = requests.post(url, json=payload, headers=headers)
print(response.json())