Standalone query rewriter use caseLucidworks AI Prediction API
The Standalone query rewriter use case of the LWAI Prediction API rewrites the text in reference to the context based on the memoryUuid
into a standalone query.
This use case can only use the memoryUuid
from a previous RAG query or standalone interaction.
To view the full configuration specification for an API, click the View API specification button. Alternatively, click here to open the API spec. |
Prerequisites
To use this API, you need:
-
The unique
APPLICATION_ID
for your Lucidworks AI application. For more information, see credentials to use APIs. -
A bearer token generated with a scope value of
machinelearning.predict
. For more information, see Authentication API. -
The
USE_CASE
andMODEL_ID
fields for the use case request. The path is:/ai/prediction/USE_CASE/MODEL_ID
. A list of supported models is returned in the Lucidworks AI Use Case API. For more information about supported models, see Generative AI models.
Common parameters and fields
Some parameters in the /ai/async-prediction/USE_CASE/MODEL_ID
request are common to all of the generative AI (GenAI) use cases, such as the modelConfig
parameter.
Also referred to as hyperparameters, these fields set certain controls on the response.
Refer to the API spec for more information.
Unique values for the standalone query rewriter use case
Some parameter values available in the standalone query rewriter
use case are unique to this use case, including values for the useCaseConfig
parameter.
Refer to the API spec for more information.
Example request
This example does not include modelConfig
parameters, but you can submit requests that include parameters described in Common parameters and fields.
curl --request POST \
--url https://APPLICATION_ID.applications.lucidworks.com/ai/prediction/standalone_query_rewriter/MODEL_ID \
--header 'Authorization: Bearer ACCESS_TOKEN' \
--header 'Content-type: application/json' \
--data '{
"batch": [
{
"text": "Is it a framework?"
},
],
"useCaseConfig": {
"memoryUuid": "27a887fe-3d7c-4ef0-9597-e2dfc054c20e"
}
}'
The following is an example response:
{
"predictions": [
{
"response": "Is RAG a framework?",
"tokensUsed": {
"promptTokens": 245,
"completionTokens": 6,
"totalTokens": 251
},
}
]
}