NLP Annotator Query Stage
Like the NLP Annotator index stage, the NLP Annotator query stage can be included in an query pipeline to perform Natural Language Processing tasks.
.Example of how to use NLP Annotator Query stage:
. Add the NLP Annotator query stage to the query pipeline.
. Configure the query pipeline stage:
.. Specify the model to use (fill the box with model id
in the blob store).
.. Specify the input parameter, label pattern and target parameter fields:
+
+
input parameter field: the Fusion query parameter text, normally q
since we want to annotate the raw query string to understand the intent.
label pattern: regex pattern that matches the NER/POS labels: for example, PER.
will match extracted name entities with label PERSON
, while NN.
will match tagged nouns.
** target parameter field: the outcome extraction/tagging, and.
+
For the query stage, the result is set to be put in a new query parameter field:
|
When entering configuration values in the UI, use unescaped characters, such as \t for the tab character. When entering configuration values in the API, use escaped characters, such as \\t for the tab character.
|
Annotate a query using NLP
skip - boolean
Set to true to skip this stage.
Default: false
label - string
A unique label for this stage.
<= 255 characters
condition - string
Define a conditional script that must result in true or false. This can be used to determine if the stage should process or not.
annotatorType - stringrequired
Default: sparknlp
Allowed values: sparknlpopennlp
sparknlpNERModel - string
If Spark NLP annotator is used, specify the blobstore location of the NER model
>= 1 characters
sparknlpPOSModel - string
If Spark NLP annotator is used, specify the blobstore location of the POS model
>= 1 characters
failOnError - boolean
Flag to indicate if this stage should throw an exception if an error occurs while generating a prediction for a document.
Default: false
inputParam - string
Name of the request parameter to annotate using NLP
>= 1 characters
Default: q
extractorRules - array[object]
Define rules to extract annotated text into separate parameters
object attributes:{extractedAnnotationType
required : {
display name: Annotation Type to Extract
type: string
}labelPattern
required : {
display name: Label Pattern
type: string
}targetParamName
required : {
display name: Target Parameter Name
type: string
}flattenList
: {
display name: Flatten Multiple
type: boolean
}}