Product Selector

Fusion 5.12
    Fusion 5.12

    Fusion SQL Statistics

    Sampling is often used in statistical analysis to gain an understanding of the distribution, shape, and dispersion of a variable or the relationship between variables.

    Fusion SQL returns a random sample for all basic selects that do not contain an ORDER BY clause. The random sample is designed to return a uniform distribution of samples that match a query. The sample can be used to infer statistical information about the larger result set.

    The example below returns a random sample of single field:

    select filesize_d from logs where year_i = 2019

    If no limit is specified the sample size will be 25000. To increase the sample size add a limit larger than 25000.

    select filesize_d from logs where year_i = 2019 limit 50000

    The ability to subset the data with a query and then sample from that subset is called Stratified Random Sampling. Stratified Random Sampling is an important statistical technique used to better understand sub-populations of a larger data set.

    Descriptive statistics

    Sub-queries can be used to return random samples for fast, often sub-second, statistical analysis. For example:

    select count(*) as samplesize,
           mean(filesize_d) as mean,
           min(filesize_d) as min,
           max(filesize_d) as max,
           approx_percentile(filesize_d, .50) as median,
           variance(filesize_d) as variance,
           std(filesize_d) as standard_dev,
           skewness(filesize_d) as skewness,
           kurtosis(filesize_d) as kurtosis,
           sum(filesize_d) as sum
               from (select filesize_d from logs where year_i = 2019 limit 50000)

    In the example above, the sub-query is returning a random sample of 50000 results which is operated on by the main statistical query. The statistical query returns aggregations which describe the distribution, shape, and dispersion of the sample set.

    Correlation and covariance

    Sub-queries can be used to provide random samples for correlation and covariance:

    select corr(filesize_d, response_d) as correlation,
           covar_samp(filesize_d, response_d) as covariance
                from (select filesize_d, response_d from logs limit 50000)

    In the example above, the random sample returns two fields to the corr and covar_samp functions in the main query. Correlation and covariance are used to show the strength of the linear relationship between two variables.

    Pushed-down statistical queries

    A narrower set of statistical aggregations can be pushed down to the search engine and operate over entire result sets. These functions are: count(*), count(distinct), sum, min, max, avg and approx_percentile.

    Below is an example of a fully pushed down statistical query:

    select count(*) as cnt, avg(filesize_d) as avg, approx_percentile(filesize_d, .50) as median from logs where year_i = 2018

    Statistical queries that contain a mix of the queries above and non-pushdown such as skewness or kurtosis will be operate over a random sample that matches the query.

    Below is an example of a statisical query that operates over a random sample:

    select count(*) as cnt,  skewness(filesize_d) as skewness from logs where year_i = 2018