Version 5.1
How To
    Learn More

      Spark Jobs API

      API Objective: Process data.

      This is a set of endpoints for configuring and running Spark jobs.

      Spark job subtypes

      For the Spark job type, the available subtypes are listed below.

      • Aggregation

        Define an aggregation job.

      • custom Python job.

        The Custom Python job provides user the ability to run Python code via Fusion. This job supports Python 3.6+ code.

      • Script

        Run a custom Scala script as a Fusion job.

      Additional Spark jobs are available with a Fusion license.

      Spark Configuration Properties

      Fusion passes all configuration properties with prefix "spark." to the Spark master, Spark worker and each Spark application, both for aggregation jobs and custom-scripted processing.

      These properties are stored in Fusion’s ZooKeeper and can be updated via requests to Fusion endpoint api/configurations which will update the stored value without restarting the service, therefore existing jobs and SparkContexts will not be affected. The Fusion endpoint api/configurations returns all configured properties for that installation. You can examine spark default configurations in a Unix shell using the utilities curl and grep. Here is an example that checks a local Fusion installation running on port 6764:

      curl -u username:password http://fusion-host:6764/api/configurations | grep '"spark.'
        "spark.executor.memory" : "2g",
        "spark.task.maxFailures" : "10",
        "spark.worker.cleanup.appDataTtl" : "7200",
        "spark.worker.cleanup.enabled" : "true",
        "spark.worker.memory" : "2g",

      The default SparkContext that Fusion uses for aggregation jobs can be assigned a fraction of cluster resources (executor memory and/or available CPU cores). This allows other applications (such as scripted jobs, or shell sessions) to use the remaining cluster resources even when some aggregation jobs are running. Fusion also supports dynamic allocation for all applications. This can be overridden per application. In practice, this means that even when there is an already running SparkContext with a relatively long idle time (eg. 10 minutes) but there are no active jobs that use it, its resources (CPU cores and executor memory) will be released for use by other applications.

      For scripted Spark jobs, users can specify per-job configuration overrides as a set of key / value pairs in a "sparkConfig" property element of a script job configuration, which takes precedence over values stored in ZooKeeper. The following is an example of a scripted job with a "sparkConfig" section:

        "id": "scripted_job_example",
        "script": "val rdd = sc.textFile(\"/foo.txt\")\nrdd.count\n",
        "sparkConfig": {
          "spark.cores.max": 2,
          "spark.executor.memory": "1g"

      The following table lists those Spark configuration properties that Fusion overrides or uses in order to determine applications' resource allocations.

      Property Description


      By default, left unset. This property is only specified when using an external Spark cluster; when Fusion is using its own standalone Spark cluster, this property is not set.


      The maximum number of cores across the cluster assigned to the application. If not specified, there is no limit. The default is unset, i.e., an unlimited number of cores.


      Amount of memory assigned to each application’s executor. The default is 2G.


      Controls how tasks are assigned to available resources. Can be either 'FIFO' or 'FAIR'. Default value is 'FAIR'.


      Boolean - whether or not to enable dynamic allocation of executors. Default value is 'TRUE'.


      Boolean - whether or not to enable internal shuffle service for standalone Spark cluster. Default value is 'TRUE'.


      Number of seconds after which idle executors are removed. Default value is '60s'.


      Number of executors to leave running even when idle. Default value is 0.


      Boolean - whether or not event log is enabled. Event log stores job details and can be accessed after application finishes. Default value is 'TRUE'.


      Directory that stores event logs. Default location is $FUSION_HOME/var/spark-eventlog.


      Boolean - whether or not to compress event log data. Default value is 'TRUE'.


      Boolean - whether or not to log effective SparkConf of new SparkContext-s. Default value is 'TRUE'.


      Default value is 'ZOOKEEPER'


      ZooKeeper connect string. Default value is $FUSION_ZK


      ZooKeeper path, default value is /lucid/spark


      Boolean - whether or not to periodically cleanup worker data. Default value is 'TRUE'.


      Time-to-live in seconds. Default value is 86400 (24h).


      The maximum number of applications to show in the UI. Default value is 50.


      The maximum number of drivers. Default value is 50.


      The maximum timeout in seconds allowed before a worker is considered lost. The default value is 30.


      The maximum total heap allocated to all executors running on this worker. Defaults to value of the executor memory heap.

      Fusion Configuration Properties

      Property Description


      Spark master job submission port. Default value is 8766.


      Spark master web UI port. Default value is 8767.


      Maximum idle time in seconds, after which the application (ie. SparkContext) is shut down. Default value is 300.


      Minimum executor memory in MB. Default value 450Mb, which is sufficient to let Fusion components in application task’s to initialize themselves


      A float number in range (0.0, 1.0] indicating what portion of spark.executor.memory to allocate to this application. Default value is 1.0.


      A float number in range (0.0, 1.0] indicating what portion of spark.cores.max to allocate to this application. Default value is 1.0.

      Loading API specification...